วันเสาร์ที่ 4 มกราคม พ.ศ. 2557

ฟังก์ชัน


ฟังก์ชัน (Function)  คือ  ความสัมพันธ์  ซึ่งในสองคู่อันดับใด ๆ ของความสัมพันธ์นั้น
ถ้ามีสมาชิกตัวหน้าเท่ากันแล้ว  สมาชิกตัวหลังต้องไม่แตกต่างกัน
หรือ  ฟังก์ชัน  คือ  ความสัมพันธ์  ซึ่งในสองคู่อันดับใด ๆ ของความสัมพันธ์นั้น  ถ้าสมาชิกตัวหน้าเท่ากัน  สมาชิกตัวหลังต้องเท่ากันด้วย
นั่นคือ   ความสัมพันธ์ f จะเป็นฟังก์ชัน ก็ต่อเมื่อ ถ้า (x, y1) ε f และ (x, y2) ε f แล้ว  y1 = y2
ถ้าหากว่าความสัมพันธ์ที่กำหนดให้อยู่ในรูปแบบบอกเงื่อนไข  การตรวจสอบว่าความสัมพันธ์นั้นเป็นฟังก์ชันหรือไม่สามารถทำได้กลายวิธี  ดังต่อไปนี้


วิธีที่  1 ถ้า  r  เป็นความสัมพันธ์ซึ่งประกอบด้วยคู่อันดับ  (x, y)  และมีเงื่อนไข  r(x, y)  แล้ว  ให้นำเงื่อนไข  r(x, y)  มาเขียนใหม่โดยเขียน y ในรูปของ x และพิจารณาดังนี้

1)  ถ้าแต่ละค่าของ x หาค่า y ได้เพียงค่าเดียว  สรุปว่า r เป็นฟังก์ชัน
2)  ถ้ามีบางค่าของ x ที่ทำให้หาค่า y ได้มากกว่าหนึ่งค่า  สรุปว่า r ไม่เป็นฟังก์ชัน

 วิธีที่  2 เมื่อกำหนดความสัมพันธ์ r ซึ่งประกอบด้วยคู่อันดับ (x, y) และมีเงื่อนไข  r(x, y)
สมมติให้ (x, y) ε r และ (x, z) ε r  ดังนั้นจะได้เงื่อนไข  r(x, y)  และ  r(x, z) พิจารณา

1)  ถ้าสามารถแสดงได้ว่า  y = z จะได้ว่า r เป็นฟังก์ชัน
2)  ถ้ากรณีที่มี  y ε z  จะได้ว่า  r  ไม่เป็นฟังก์ชัน

วิธีที่ 3 โดยใช้กราฟ
กำหนดกราฟความสัมพันธ์ r ให้ลากเส้นตรงที่ขนานกับแกน Y
และให้ตัดกราฟของความสัมพันธ์ r พิจารณา

1)  ถ้าเส้นตรงแต่ละเส้นตัดกราฟของ r ได้เพียงจุดเดียวเท่านั้น จะได้ว่า r เป็นฟังก์ชัน
2)  ถ้ามีเส้นตรงบางเส้นตัดกราฟของ r มากกว่าหนึ่งจุด  จะได้ว่า r จะไม่เป็นฟังก์ชัน

 

 

ไม่มีความคิดเห็น:

แสดงความคิดเห็น